Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 10925, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740826

ABSTRACT

Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.


Subject(s)
Extracellular Vesicles , Inflammatory Bowel Diseases , MicroRNAs , Ultrasonography , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Female , Adult , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/diagnostic imaging , Inflammatory Bowel Diseases/pathology , Middle Aged , Ultrasonography/methods , Prospective Studies , Biomarkers/metabolism
2.
iScience ; 27(3): 109173, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38496294

ABSTRACT

Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.

3.
Genome Biol ; 25(1): 81, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553769

ABSTRACT

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Subject(s)
Genomics , RNA , Humans , Animals , Mice , Tissue Fixation/methods , Reproducibility of Results , Sequence Analysis, RNA/methods , RNA/genetics , Genomics/methods , Single-Cell Analysis/methods
4.
EBioMedicine ; 102: 105056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471395

ABSTRACT

BACKGROUND: Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs. METHODS: We used high performance liquid chromatography and targeted mass spectrometry to assess the serum and stool levels of Trp and Trp derivatives. Our retrospective study incorporates both cross-sectional and longitudinal components, as we have included a healthy population as a reference and there are also multiple observations per patient over time. FINDINGS: We found reduced serum Trp levels across the majority of CIDs, and a prevailing negative relationship between Trp and systemic inflammatory marker C-reactive protein (CRP). Notably, serum Trp was low in several CIDs even in the absence of measurable systemic inflammation. Increases in the kynurenine-to-Trp ratio (Kyn:Trp) suggest that these changes result from increased degradation along the kynurenine pathway. INTERPRETATION: Increases in Kyn:Trp indicate the kynurenine pathway as a major route for CID-related Trp metabolism disruption and the specificity of the network changes indicates excessive Trp degradation relative to other proteogenic amino acids. Our results suggest that increased Trp catabolism is a common metabolic occurrence in CIDs that may directly affect systemic immunity. FUNDING: This work was supported by the DFG Cluster of Excellence 2167 "Precision medicine in chronic inflammation" (KA, SSchr, PR, BH, SWa), the BMBF (e:Med Juniorverbund "Try-IBD" 01ZX1915A and 01ZX2215, the e:Med Network iTREAT 01ZX2202A, and GUIDE-IBD 031L0188A), EKFS (2020_EKCS.11, KA), DFG RU5042 (PR, KA), and Innovative Medicines Initiative 2 Joint Undertakings ("Taxonomy, Treatments, Targets and Remission", 831434, "ImmUniverse", 853995, "BIOMAP", 821511).


Subject(s)
Inflammatory Bowel Diseases , Tryptophan , Humans , Tryptophan/metabolism , Kynurenine , Retrospective Studies , Cross-Sectional Studies , Inflammation/metabolism , Chronic Disease
5.
Gut Microbes ; 15(2): 2286675, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38059748

ABSTRACT

Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Mice , Animals , Escherichia coli/genetics , Clinical Relevance , Inflammatory Bowel Diseases/genetics , Bacteria , Inflammation , Genotype
7.
Nat Med ; 29(10): 2602-2614, 2023 10.
Article in English | MEDLINE | ID: mdl-37749331

ABSTRACT

Aberrant CD4+ T cell reactivity against intestinal microorganisms is considered to drive mucosal inflammation in inflammatory bowel diseases. The disease-relevant microbial species and the corresponding microorganism-specific, pathogenic T cell phenotypes remain largely unknown. In the present study, we identified common gut commensal and food-derived yeasts, as direct activators of altered CD4+ T cell reactions in patients with Crohn's disease (CD). Yeast-responsive CD4+ T cells in CD display a cytotoxic T helper cell (TH1 cell) phenotype and show selective expansion of T cell clones that are highly cross-reactive to several commensal, as well as food-derived, fungal species. This indicates cross-reactive T cell selection by repeated encounter with conserved fungal antigens in the context of chronic intestinal disease. Our results highlighted a role of yeasts as drivers of aberrant CD4+ T cell reactivity in patients with CD and suggest that both gut-resident fungal commensals and daily dietary intake of yeasts might contribute to chronic activation of inflammatory CD4+ T cell responses in patients with CD.


Subject(s)
Crohn Disease , Inflammatory Bowel Diseases , Humans , Crohn Disease/microbiology , CD4-Positive T-Lymphocytes , Inflammatory Bowel Diseases/pathology , T-Lymphocytes, Helper-Inducer , Clone Cells/pathology , Intestinal Mucosa/pathology , Th17 Cells/pathology , Th1 Cells/pathology
9.
Front Immunol ; 14: 1201363, 2023.
Article in English | MEDLINE | ID: mdl-37404824

ABSTRACT

Autoimmune pancreatitis responds well to corticosteroids in most instances. Additional immunosuppression or low-dose maintenance steroids may be necessary upon relapse. There is limited data on alternative strategies when these regiments fail or cause adverse reactions. We report a case of a middle-aged woman with autoimmune pancreatitis in whom tapering of prednisolone below the dose of 25mg per day resulted in relapse of symptoms and long-term steroid use led to development of steroid induced hyperglycaemia. Induction and maintenance of steroid-free remission was ultimately successful under vedolizumab therapy. Remission has been stable for over one year with reduced need for antidiabetic intervention. This is the first reported case of treatment of refractory autoimmune pancreatitis with vedolizumab. It highlights the overlap of immunological mechanisms within inflammatory diseases of the digestive tract and how knowledge of biological data can inform treatment decisions for individual cases. The demonstrated efficacy of vedolizumab and low risk of severe side effects warrant further investigation into its use in autoimmune pancreatitis.


Subject(s)
Autoimmune Pancreatitis , Middle Aged , Female , Humans , Prednisolone/therapeutic use , Steroids/therapeutic use , Recurrence
10.
J Adv Res ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37330047

ABSTRACT

INTRODUCTION: Clara cell 16-kDa protein (CC16) is an anti-inflammatory, immunomodulatory secreted pulmonary protein with reduced serum concentrations in obesity according to recent data. OBJECTIVE: Studies focused solely on bodyweight, which does not properly reflect obesity-associated implications of the metabolic and reno-cardio-vascular system. The purpose of this study was therefore to examine CC16 in a broad physiological context considering cardio-metabolic comorbidities of primary pulmonary diseases. METHODS: CC16 was quantified in serum samples in a subset of the FoCus (N = 497) and two weight loss intervention cohorts (N = 99) using ELISA. Correlation and general linear regression analyses were applied to assess CC16 effects of lifestyle, gut microbiota, disease occurrence and treatment strategies. Importance and intercorrelation of determinants were validated using random forest algorithms. RESULTS: CC16 A38G gene mutation, smoking and low microbial diversity significantly decreased CC16. Pre-menopausal female displayed lower CC16 compared to post-menopausal female and male participants. Biological age and uricosuric medications increased CC16 (all p < 0.01). Adjusted linear regression revealed CC16 lowering effects of high waist-to-hip ratio (est. -11.19 [-19.4; -2.97], p = 7.99 × 10-3), severe obesity (est. -2.58 [-4.33; -0.82], p = 4.14 × 10-3) and hypertension (est. -4.31 [-7.5; -1.12], p = 8.48 × 10-3). ACEi/ARB medication (p = 2.5 × 10-2) and chronic heart failure (est. 4.69 [1.37; 8.02], p = 5.91 × 10-3) presented increasing effects on CC16. Mild associations of CC16 were observed with blood pressure, HOMA-IR and NT-proBNP, but not manifest hyperlipidemia, type 2 diabetes, diet quality and dietary weight loss intervention. CONCLUSION: A role of metabolic and cardiovascular abnormalities in the regulation of CC16 and its modifiability by behavioral and pharmacological interventions is indicated. Alterations by ACEi/ARB and uricosurics could point towards regulatory axes comprising the renin-angiotensin-aldosterone system and purine metabolism. Findings altogether strengthen the importance of interactions among metabolism, heart and lungs.

11.
Sci Adv ; 9(13): eadf4055, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37000885

ABSTRACT

The metalloproteases meprin α and meprin ß are highly expressed in the healthy gut but significantly decreased in inflammatory bowel disease, implicating a protective role in mucosal homeostasis. In the colon, meprin α and meprin ß form covalently linked heterodimers tethering meprin α to the plasma membrane, therefore presenting dual proteolytic activity in a unique enzyme complex. To unravel its function, we applied N-terminomics and identified galectin-3 as the major intestinal substrate for meprin α/ß heterodimers. Galectin-3-deficient and meprin α/ß double knockout mice show similar alterations in their microbiome in comparison to wild-type mice. We further demonstrate that meprin α/ß heterodimers differentially process galectin-3 upon bacterial infection, in germ-free, conventionally housed (specific pathogen-free), or wildling mice, which in turn regulates the bacterial agglutination properties of galectin-3. Thus, the constitutive cleavage of galectin-3 by meprin α/ß heterodimers may play a key role in colon host-microbiome homeostasis.


Subject(s)
Galectin 3 , Metalloendopeptidases , Mice , Animals , Galectin 3/genetics , Galectin 3/metabolism , Metalloproteases/metabolism , Proteolysis , Mice, Knockout , Homeostasis
12.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Article in English | MEDLINE | ID: mdl-36906052

ABSTRACT

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Autoantibodies , Autoimmunity , Receptors, G-Protein-Coupled/metabolism
13.
J Med Virol ; 95(2): e28450, 2023 02.
Article in English | MEDLINE | ID: mdl-36597912

ABSTRACT

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Transcriptome , Killer Cells, Natural , Cell Cycle
14.
J Crohns Colitis ; 17(3): 389-395, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36282973

ABSTRACT

BACKGROUND: Histological disease severity assessment in ulcerative colitis [UC] has become a mainstay in the definition of clinical endpoints ['histological remission'] in clinical trials of UC. Several scores have been established in the microscopic assessment of disease activity, but the Nancy index [NI] stands out as being the histological index with the fewest scoring items. To what extent histological assessment using the NI is affected by interobserver reliability in a real-word setting is poorly understood. We therefore performed a single-centre retrospective analysis of NI assessment in patients with UC. METHODS: We retrospectively evaluated the NI in two independent cohorts [total: 1085 biopsies, 547 UC patients] of clinically diagnosed UC patients, who underwent colonoscopy between 2007 and 2020. Cohort #1 consisted of 637 biopsies from 312 patients, while Cohort #2 consisted of 448 biopsies from 235 patients. Two blinded pathologists with different levels of expertise scored all biopsies from each cohort. A consensus conference was held for cases with discrepant scoring results. Finally, an overall consensus scoring was obtained from both cohorts. RESULTS: The interobserver agreement of the NI was substantial after the assessment of 1085 biopsy samples (κ = 0.796 [95% confidence interval, CI: 0.771-0.820]). An improvement of the interobserver agreement was found with increasing numbers of samples evaluated by both observers (Cohort #1: κ = 0.772 [95% CI: 0.739-0.805]; Cohort #2: κ = 0.829 [95% CI: 0.793-0.864]). Interobserver discordance was highest in NI grade 1 [observer 1: n = 128; observer 2: n = 236]. Interobserver discordance was lowest in NI grades 0 [observer 1: n = 504; observer 2: n = 479] and 3 [observer 1: n = 71; observer 2: n = 66]. CONCLUSION: The NI is an easy-to-use index with high interobserver reliability for assessment of the histological disease activity of UC patients in a real-world setting. While NI grades 0 and 3 had a high level of agreement between observers, NI grade 1 had a poorer level of agreement. This highlights the clinical need to specify histological characteristics leading to NI grade 1.


Subject(s)
Colitis, Ulcerative , Humans , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/pathology , Retrospective Studies , Reproducibility of Results , Severity of Illness Index , Colonoscopy/methods , Observer Variation
15.
Dig Dis ; 41(3): 387-395, 2023.
Article in English | MEDLINE | ID: mdl-36412565

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) care and education might differ around Europe. Therefore, we conducted this European Variation In IBD PracticE suRvey (VIPER) to investigate potential differences between countries. METHODS: This trainee-initiated survey, run through SurveyMonkey®, consisted of 47 questions inquiring basic demographics, IBD training, and clinical care. Results were compared according to gross domestic product (GDP) per capita, for which countries were divided into 2 groups (low/high income, according to the World Bank). RESULTS: The online survey was completed by 1,285 participants from 40 European countries, with a majority of specialists (65.3%) working in academic institutions (50.4%). Significant differences in IBD-specific training (55.9% vs. 38.4%), as well as availability of IBD units (58.4% vs. 39.7%) and multidisciplinary meetings (73.2% vs. 40.1%), were observed between respondees from high and low GDP countries (p < 0.0001). In high GDP countries, IBD nurses are more common (85.9% vs. 36.0%), also mirrored by more nurse-led IBD clinics (40.6% vs. 13.7%; p < 0.0001). IBD dieticians (33.4% vs. 16.5%) and psychologists (16.8% vs. 7.5%) are mainly present in high GDP countries (p < 0.0001). In the current COVID era, telemedicine is available in 73.2% versus 54.1% of the high/low GDP countries, respectively (p < 0.0001). Treat-to-target approaches are implemented everywhere (85.0%), though access to biologicals and small molecules differs significantly. CONCLUSION: Much variability in IBD practice exists across Europe, with marked differences between high and low GDP countries. Further work is required to help address some of these inequalities, aiming to improve and standardize IBD care and training across Europe.


Subject(s)
Biological Products , COVID-19 , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/therapy , Europe/epidemiology , Surveys and Questionnaires
16.
J Exp Med ; 220(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36413219

ABSTRACT

Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.


Subject(s)
Colitis, Ulcerative , Verrucomicrobia , Humans , Mice , Animals , Verrucomicrobia/metabolism , Mucus/metabolism , Lectins , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology
17.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36575710

ABSTRACT

In patients with severe #COVID19, increased levels of autoantibodies against PAR1 were found. These might serve as allosteric agonists of PAR1 on endothelial cells and platelets, and thus might contribute to the pathogenesis of microthrombosis in COVID-19. https://bit.ly/3pqM9Vv.

18.
Nat Commun ; 13(1): 6266, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271073

ABSTRACT

Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.


Subject(s)
DNA Methyltransferase 3A , Inflammatory Bowel Diseases , Humans , Mice , Animals , Caco-2 Cells , Intestinal Mucosa/metabolism , Colon/pathology , Epithelial Cells/metabolism , Inflammatory Bowel Diseases/pathology , Tumor Necrosis Factors/metabolism , DNA/metabolism
19.
Front Immunol ; 13: 1037115, 2022.
Article in English | MEDLINE | ID: mdl-36311771

ABSTRACT

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Sepsis , Humans , Biomarkers , Blood Proteins/metabolism , Case-Control Studies , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Research Report , SARS-CoV-2 , Sepsis/metabolism , Uteroglobin/metabolism
20.
Sci Rep ; 12(1): 14935, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056109

ABSTRACT

Obesity and type 2 diabetes (T2D) show an increased risk for a severe COVID-19 disease. Treatment with DPP4 inhibitor (DPP4i) results in reduced mortality and better clinical outcome. Here, we aimed to identify potential mechanisms for the observed DPP4i effect in COVID-19. Comparing T2D subjects with and without DPP4i treatment, we identified a significant increase of the anti-inflammatory adipokine sFRP5 in relation to DPP4 inhibition. sFRP5 is a specific antagonist to Wnt5a, a glycopeptide secreted by adipose tissue macrophages acting pro-inflammatory in various diseases. We therefore examined sFRP5 levels in patients hospitalised for severe COVID-19 and found significant lower levels compared to healthy controls. Since sFRP5 might consequently be a molecular link for the beneficial effects of DPP4i in COVID-19, we further aimed to identify the exact source of sFRP5 in adipose tissue on cellular level. We therefore isolated pre-adipocytes, mature adipocytes and macrophages from adipose tissue biopsies and performed western-blotting. Results showed a sFRP5 expression specifically in mature adipocytes of subcutaneous and omental adipose tissue. In summary, our data suggest that DPP4i increase serum levels of anti-inflammatory sFRP5 which might be beneficial in COVID-19, reflecting a state of sFRP5 deficiency.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Anti-Inflammatory Agents , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Eye Proteins/metabolism , Humans , Hypoglycemic Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...